• Gene set enrichment analysis and expression pattern exploration implicate an involvement of neurodevelopmental processes in bipolar disorder.

      Mühleisen, Thomas W; Reinbold, Céline S; Forstner, Andreas J; Abramova, Lilia I; Alda, Martin; Babadjanova, Gulja; Bauer, Michael; Brennan, Paul; Chuchalin, Alexander; Cruceanu, Cristiana; et al. (2018)
      Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological information from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about biological processes to integrate functional sets of genes at strongly to moderately associated loci.
    • Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer.

      Lesseur, Corina; Diergaarde, Brenda; Olshan, Andrew F; Wünsch-Filho, Victor; Ness, Andrew R; Liu, Geoffrey; Lacko, Martin; Eluf-Neto, José; Franceschi, Silvia; Lagiou, Pagona; et al. (2016-12)
      We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10(-8)), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10(-9)). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10(-6)) than in HPV-negative (OR = 0.75, P = 0.16) cancers.
    • Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer.

      Lesseur, Corina; Diergaarde, Brenda; Olshan, Andrew F; Wünsch-Filho, Victor; Ness, Andrew R; Liu, Geoffrey; Lacko, Martin; Eluf-Neto, José; Franceschi, Silvia; Lagiou, Pagona; et al. (2016-12)
      We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10(-8)), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10(-9)). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10(-6)) than in HPV-negative (OR = 0.75, P = 0.16) cancers.
    • Matrix metalloproteinases and genetic mouse models in cancer research: a mini-review.

      Wieczorek, Edyta; Jablonska, Ewa; Wasowicz, Wojciech; Reszka, Edyta; Nofer Institute of Occupational Medicine, Łódź, Poland (2015-01)
      Carcinogenesis is a multistep and also a multifactorial process that involves agents like genetic and environmental factors. Matrix metalloproteinases (MMPs) are major proteolytic enzymes which are involved in cancer cell migration, invasion, and metastasis. Genetic variations in genes encoding the MMPs were shown in human studies to influence cancer risk and phenotypic features of a tumor. The complex role of MMPs seems to be important in the mechanism of carcinogenesis, but it is not well recognized. Rodent studies concentrated particularly on the better understanding of the biological functions of the MMPs and their impact on the pathological process, also through the modification of Mmp genes. This review presents current knowledge and the existing evidence on the importance of selected MMPs in genetic mouse models of cancer and human genetic association studies. Further, this work can be useful for scientists studying the role of the genetic impact of MMPs in carcinogenesis.
    • Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma.

      Wang, Zhaoxi; Wei, Yongyue; Zhang, Ruyang; Su, Li; Gogarten, Stephanie M; Liu, Geoffrey; Brennan, Paul; Field, John K; McKay, James D; Lissowska, Jolanta; et al. (2018-06)
      Recent technological advancements have permitted high-throughput measurement of the human genome, epigenome, metabolome, transcriptome, and proteome at the population level. We hypothesized that subsets of genes identified from omic studies might have closely related biological functions and thus might interact directly at the network level. Therefore, we conducted an integrative analysis of multi-omic datasets of non-small cell lung cancer (NSCLC) to search for association patterns beyond the genome and transcriptome. A large, complex, and robust gene network containing well-known lung cancer-related genes, including EGFR and TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the hypoxia-inducible factor (HIF) gene family were at the center of this network. Subsequent sequencing of network hub genes within a subset of samples from the Transdisciplinary Research in Cancer of the Lung-International Lung Cancer Consortium (TRICL-ILCCO) consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached genome-wide significance (OR = 1.50; 95% CI: 1.31-1.72; p = 7.75 × 10-9). Using imputed data, we found that this SNP remained significant in the entire TRICL-ILCCO consortium (p = .03). Additional functional studies are warranted to better understand interrelationships among genetic polymorphisms, DNA methylation status, and EPAS1 expression.