• Antibodies Against Chlamydia trachomatis and Ovarian Cancer Risk in Two Independent Populations.

      Trabert, Britton; Waterboer, Tim; Idahl, Annika; Brenner, Nicole; Brinton, Louise A; Butt, Julia; Coburn, Sally B; Hartge, Patricia; Hufnagel, Katrin; Inturrisi, Federica; et al. (2019-02-01)
      Pelvic inflammatory disease (PID) has been associated with ovarian cancer risk. To clarify the role of Chlamydia trachomatis and other infectious agents in the development of ovarian cancer, we evaluated the association of serologic markers with incident ovarian cancer using a staged approach in two independent populations. Studies included: 1) a case-control study in Poland (244 ovarian cancers/556 control subjects) and 2) a prospective nested case-control study in the PLCO Cancer Screening Trial (160 ovarian cancers/159 control subjects). Associations of serologic marker levels with ovarian cancer risk at diagnostic as well as higher thresholds, identified in Poland and independently evaluated in PLCO, were estimated using multivariable adjusted logistic regression. In the Polish study, antibodies (based on laboratory cut-point) against the chlamydia plasmid-encoded Pgp3 protein (serological gold standard) were associated with increased ovarian cancer risk (adjusted odds ratio [OR] = 1.63, 95% confidence interval [CI] = 1.20 to 2.22); when a positive result was redefined at higher levels, ovarian cancer risk was increased (cut-point 2: OR = 2.00, 95% CI = 1.38 to 2.89; cut-point 3 [max OR]: OR = 2.19, 95% CI = 1.29 to 3.73). In the prospective PLCO study, Pgp3 antibodies were associated with elevated risk at the laboratory cut-point (OR = 1.43, 95% CI = 0.78 to 2.63) and more stringent cut-points (cut-point 2: OR = 2.25, 95% CI = 1.07 to 4.71); cut-point 3: OR = 2.53, 95% CI = 0.63 to 10.08). In both studies, antibodies against other infectious agents measured were not associated with risk. In two independent populations, antibodies against prior/current C. trachomatis (Pgp3) were associated with a doubling in ovarian cancer risk, whereas markers of other infectious agents were unrelated. These findings lend support for an association between PID and ovarian cancer.
    • Exposure-Response Analyses of Asbestos and Lung Cancer Subtypes in a Pooled Analysis of Case-Control Studies.

      Olsson, Ann C; Vermeulen, Roel; Schüz, Joachim; Kromhout, Hans; Pesch, Beate; Peters, Susan; Behrens, Thomas; Portengen, Lützen; Mirabelli, Dario; Gustavsson, Per; et al. (2017-03)
      Evidence is limited regarding risk and the shape of the exposure-response curve at low asbestos exposure levels. We estimated the exposure-response for occupational asbestos exposure and assessed the joint effect of asbestos exposure and smoking by sex and lung cancer subtype in general population studies.
    • Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity.

      Ferreiro-Iglesias, Aida; Lesseur, Corina; McKay, James; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Christiani, David; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; et al. (2018-09-25)
      Lung cancer has several genetic associations identified within the major histocompatibility complex (MHC); although the basis for these associations remains elusive. Here, we analyze MHC genetic variation among 26,044 lung cancer patients and 20,836 controls densely genotyped across the MHC, using the Illumina Illumina OncoArray or Illumina 660W SNP microarray. We impute sequence variation in classical HLA genes, fine-map MHC associations for lung cancer risk with major histologies and compare results between ethnicities. Independent and novel associations within HLA genes are identified in Europeans including amino acids in the HLA-B*0801 peptide binding groove and an independent HLA-DQB1*06 loci group. In Asians, associations are driven by two independent HLA allele sets that both increase risk in HLA-DQB1*0401 and HLA-DRB1*0701; the latter better represented by the amino acid Ala-104. These results implicate several HLA-tumor peptide interactions as the major MHC factor modulating lung cancer susceptibility.
    • Gene set enrichment analysis and expression pattern exploration implicate an involvement of neurodevelopmental processes in bipolar disorder.

      Mühleisen, Thomas W; Reinbold, Céline S; Forstner, Andreas J; Abramova, Lilia I; Alda, Martin; Babadjanova, Gulja; Bauer, Michael; Brennan, Paul; Chuchalin, Alexander; Cruceanu, Cristiana; et al. (2018)
      Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological information from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about biological processes to integrate functional sets of genes at strongly to moderately associated loci.
    • Genetic Contributions to The Association Between Adult Height and Head and Neck Cancer: A Mendelian Randomization Analysis

      Pastorino, Roberta; Puggina, Anna; Carreras-Torres, Robert; Lagiou, Pagona; Holcátová, Ivana; Richiardi, Lorenzo; Kjaerheim, Kristina; Agudo, Antonio; Castellsagué, Xavier; Macfarlane, Tatiana V.; et al. (2018-03-14)
      With the aim to dissect the effect of adult height on head and neck cancer (HNC), we use the Mendelian randomization (MR) approach to test the association between genetic instruments for height and the risk of HNC. 599 single nucleotide polymorphisms (SNPs) were identified as genetic instruments for height, accounting for 16% of the phenotypic variation. Genetic data concerning HNC cases and controls were obtained from a genome-wide association study. Summary statistics for genetic association were used in complementary MR approaches: the weighted genetic risk score (GRS) and the inverse-variance weighted (IVW). MR-Egger regression was used for sensitivity analysis and pleiotropy evaluation. From the GRS analysis, one standard deviation (SD) higher height (6.9 cm; due to genetic predisposition across 599 SNPs) raised the risk for HNC (Odds ratio (OR), 1.14; 95% Confidence Interval (95%CI), 0.99–1.32). The association analyses with potential confounders revealed that the GRS was associated with tobacco smoking (OR = 0.80, 95% CI (0.69–0.93)). MR-Egger regression did not provide evidence of overall directional pleiotropy. Our study indicates that height is potentially associated with HNC risk. However, the reported risk could be underestimated since, at the genetic level, height emerged to be inversely associated with smoking.
    • Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development.

      Li, Yafang; Xiao, Xiangjun; Bossé, Yohan; Gorlova, Olga; Gorlov, Ivan; Han, Younghun; Byun, Jinyoung; Leighl, Natasha; Johansen, Jakob S; Barnett, Matt; et al. (2019-03-05)
      The development of cancer is driven by the accumulation of many oncogenesis-related genetic alterations and tumorigenesis is triggered by complex networks of involved genes rather than independent actions. To explore the epistasis existing among oncogenesis-related genes in lung cancer development, we conducted pairwise genetic interaction analyses among 35,031 SNPs from 2027 oncogenesis-related genes. The genotypes from three independent genome-wide association studies including a total of 24,037 lung cancer patients and 20,401 healthy controls with Caucasian ancestry were analyzed in the study. Using a two-stage study design including discovery and replication studies, and stringent Bonferroni correction for multiple statistical analysis, we identified significant genetic interactions between SNPs in
    • Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer.

      Lesseur, Corina; Diergaarde, Brenda; Olshan, Andrew F; Wünsch-Filho, Victor; Ness, Andrew R; Liu, Geoffrey; Lacko, Martin; Eluf-Neto, José; Franceschi, Silvia; Lagiou, Pagona; et al. (2016-12)
      We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10(-8)), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10(-9)). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10(-6)) than in HPV-negative (OR = 0.75, P = 0.16) cancers.
    • Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer.

      Lesseur, Corina; Diergaarde, Brenda; Olshan, Andrew F; Wünsch-Filho, Victor; Ness, Andrew R; Liu, Geoffrey; Lacko, Martin; Eluf-Neto, José; Franceschi, Silvia; Lagiou, Pagona; et al. (2016-12)
      We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10(-8)), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10(-9)). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10(-6)) than in HPV-negative (OR = 0.75, P = 0.16) cancers.
    • Genome-wide association study identifies multiple risk loci for renal cell carcinoma.

      Scelo, Ghislaine; Purdue, Mark P; Brown, Kevin M; Johansson, Mattias; Wang, Zhaoming; Eckel-Passow, Jeanette E; Ye, Yuanqing; Hofmann, Jonathan N; Choi, Jiyeon; Foll, Matthieu; et al. (2017-06-09)
      Previous genome-wide association studies (GWAS) have identified six risk loci for renal cell carcinoma (RCC). We conducted a meta-analysis of two new scans of 5,198 cases and 7,331 controls together with four existing scans, totalling 10,784 cases and 20,406 controls of European ancestry. Twenty-four loci were tested in an additional 3,182 cases and 6,301 controls. We confirm the six known RCC risk loci and identify seven new loci at 1p32.3 (rs4381241, P=3.1 × 10(-10)), 3p22.1 (rs67311347, P=2.5 × 10(-8)), 3q26.2 (rs10936602, P=8.8 × 10(-9)), 8p21.3 (rs2241261, P=5.8 × 10(-9)), 10q24.33-q25.1 (rs11813268, P=3.9 × 10(-8)), 11q22.3 (rs74911261, P=2.1 × 10(-10)) and 14q24.2 (rs4903064, P=2.2 × 10(-24)). Expression quantitative trait analyses suggest plausible candidate genes at these regions that may contribute to RCC susceptibility.
    • Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population

      Li, Yafang; Xiao, Xiangjun; Han, Younghun; Gorlova, Olga; Qian, David; Leighl, Natasha; Johansen, Jakob S; Barnett, Matt; Chen, Chu; Goodman, Gary; et al. (2018-03)
      Non-small cell lung cancer is the most common type of lung cancer. Both environmental and genetic risk factors contribute to lung carcinogenesis. We conducted a genome-wide interaction analysis between single nucleotide polymorphisms (SNPs) and smoking status (never- versus ever-smokers) in a European-descent population. We adopted a two-step analysis strategy in the discovery stage: we first conducted a case-only interaction analysis to assess the relationship between SNPs and smoking behavior using 13336 non-small cell lung cancer cases. Candidate SNPs with P-value <0.001 were further analyzed using a standard case-control interaction analysis including 13970 controls. The significant SNPs with P-value <3.5 × 10-5 (correcting for multiple tests) from the case-control analysis in the discovery stage were further validated using an independent replication dataset comprising 5377 controls and 3054 non-small cell lung cancer cases. We further stratified the analysis by histological subtypes. Two novel SNPs, rs6441286 and rs17723637, were identified for overall lung cancer risk. The interaction odds ratio and meta-analysis P-value for these two SNPs were 1.24 with 6.96 × 10-7 and 1.37 with 3.49 × 10-7, respectively. In addition, interaction of smoking with rs4751674 was identified in squamous cell lung carcinoma with an odds ratio of 0.58 and P-value of 8.12 × 10-7. This study is by far the largest genome-wide SNP-smoking interaction analysis reported for lung cancer. The three identified novel SNPs provide potential candidate biomarkers for lung cancer risk screening and intervention. The results from our study reinforce that gene-smoking interactions play important roles in the etiology of lung cancer and account for part of the missing heritability of this disease.
    • Identification of shared risk loci and pathways for bipolar disorder and schizophrenia.

      Forstner, Andreas J; Hecker, Julian; Hofmann, Andrea; Maaser, Anna; Reinbold, Céline S; Mühleisen, Thomas W; Leber, Markus; Strohmaier, Jana; Degenhardt, Franziska; Treutlein, Jens; et al. (2017)
      Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. BD shows substantial clinical and genetic overlap with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying this etiological overlap remain largely unknown. A recent SCZ genome wide association study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent genome-wide significant single nucleotide polymorphisms (SNPs). The present study investigated whether these SCZ-associated SNPs also contribute to BD development through the performance of association testing in a large BD GWAS dataset (9747 patients, 14278 controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was significantly higher than expected (p = 1.46x10-8). This provides further evidence that SCZ-associated loci contribute to the development of BD. Two SNPs remained significant after Bonferroni correction. The most strongly associated SNP was located near TRANK1, which is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in terms of the underlying genes. The enriched gene-sets included calcium- and glutamate signaling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The present data provide further insights into shared risk loci and disease-associated pathways for BD and SCZ. This may suggest new research directions for the treatment and prevention of these two major psychiatric disorders.
    • Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk

      Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa; Gui, Jiang; Xiao, Xiangjun; Qian, David; Joubert, Philippe; Lamontagne, Maxime; Li, Yafang; Gorlov, Ivan; et al. (2018-08-13)
      Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer.
    • Lung cancer and socioeconomic status in a pooled analysis of case-control studies.

      Hovanec, Jan; Siemiatycki, Jack; Conway, David I; Olsson, Ann; Stücker, Isabelle; Guida, Florence; Jöckel, Karl-Heinz; Pohlabeln, Hermann; Ahrens, Wolfgang; Brüske, Irene; et al. (2018)
      An association between low socioeconomic status (SES) and lung cancer has been observed in several studies, but often without adequate control for smoking behavior. We studied the association between lung cancer and occupationally derived SES, using data from the international pooled SYNERGY study.
    • Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma.

      Wang, Zhaoxi; Wei, Yongyue; Zhang, Ruyang; Su, Li; Gogarten, Stephanie M; Liu, Geoffrey; Brennan, Paul; Field, John K; McKay, James D; Lissowska, Jolanta; et al. (2018-06)
      Recent technological advancements have permitted high-throughput measurement of the human genome, epigenome, metabolome, transcriptome, and proteome at the population level. We hypothesized that subsets of genes identified from omic studies might have closely related biological functions and thus might interact directly at the network level. Therefore, we conducted an integrative analysis of multi-omic datasets of non-small cell lung cancer (NSCLC) to search for association patterns beyond the genome and transcriptome. A large, complex, and robust gene network containing well-known lung cancer-related genes, including EGFR and TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the hypoxia-inducible factor (HIF) gene family were at the center of this network. Subsequent sequencing of network hub genes within a subset of samples from the Transdisciplinary Research in Cancer of the Lung-International Lung Cancer Consortium (TRICL-ILCCO) consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached genome-wide significance (OR = 1.50; 95% CI: 1.31-1.72; p = 7.75 × 10-9). Using imputed data, we found that this SNP remained significant in the entire TRICL-ILCCO consortium (p = .03). Additional functional studies are warranted to better understand interrelationships among genetic polymorphisms, DNA methylation status, and EPAS1 expression.
    • Obesity, metabolic factors and risk of different histological types of lung cancer: A Mendelian randomization study.

      Carreras-Torres, Robert; Johansson, Mattias; Haycock, Philip C; Wade, Kaitlin H; Relton, Caroline L; Martin, Richard M; Davey Smith, George; Albanes, Demetrius; Aldrich, Melinda C; Andrew, Angeline; et al. (2017)
      Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer.
    • Rare Variants in Known Susceptibility Loci and Their Contribution to Risk of Lung Cancer.

      Liu, Yanhong; Lusk, Christine M; Cho, Michael H; Silverman, Edwin K; Qiao, Dandi; Zhang, Ruyang; Scheurer, Michael E; Kheradmand, Farrah; Wheeler, David A; Tsavachidis, Spiridon; et al. (2018-10)
      Genome-wide association studies are widely used to map genomic regions contributing to lung cancer (LC) susceptibility, but they typically do not identify the precise disease-causing genes/variants. To unveil the inherited genetic variants that cause LC, we performed focused exome-sequencing analyses on genes located in 121 genome-wide association study-identified loci previously implicated in the risk of LC, chronic obstructive pulmonary disease, pulmonary function level, and smoking behavior.