• Oxidative DNA damage in cucumber cotyledons irradiated with ultraviolet light.

      Watanabe, Kaori; Yamada, Naohiro; Takeuchi, Yuichi (2006-05)
      DNA was isolated from the cotyledons of cucumber seedlings irradiated with ultraviolet (UV)-C (254 nm) or UV-B+UV-A (280-360 nm; maximum energy at 312 nm) at various fluence rates and durations. Following enzymatic hydrolysis of DNA, the content of 8-hydroxy-2'-deoxyguanosine [(8-OHdG), 8-oxo-7,8-dihydro-2'-deoxyguanosine], a well-established biomarker closely identified with carcinogenesis and aging in animal cells, was determined using a high-performance liquid chromatograph equipped with an electrochemical detector. The levels of 8-OHdG increased with UV-C and UV-B irradiation in a fluence-dependent manner. This increase was also observed in etiolated cotyledons that had been excised from dark-grown cucumber seedlings and then cultured in vitro under UV light: monochromatic UV light at 270 nm or 290 nm increased the 8-OHdG level considerably, while UV at wavelengths above 310 nm had only small effects. In situ detection of H2O2 and quantification of H2O2 in plant extracts revealed that H2O2 accumulated in cotyledons irradiated with UV light. These results suggest that UV irradiation induces oxidative DNA damage in plant cells.