• Environmental arsenic exposure and sputum metalloproteinase concentrations.

      Josyula, Arun B.; Poplin, Gerald S.; Kurzius-Spencer, Margaret; McClellen, Hannah E.; Kopplin, Michael J.; Stürup, Stefan; Clark Lantz, R.; Burgess, Jefferey L. (2006-11)
      Exposure to arsenic in drinking water is associated with an increased rate of lung cancer. The objective of this study was to determine whether arsenic exposure at relatively low concentrations (approximately 20 microg/L) is associated with changes in biomarkers of lung inflammation, as measured by the ratio of sputum metalloproteinase and antiproteinase activity. A total of 73 subjects residing in Ajo and Tucson, Arizona were recruited for this cross-sectional study. Tap water and first morning void urine were analyzed for arsenic. Matrix metalloproteinase 2 (MMP-2), 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) were measured in induced sputum. Household tap water arsenic levels in Ajo (20.3+/-3.7 microg/L) were higher than in those Tucson (4.0+/-2.3 microg/L), as were mean urinary total inorganic arsenic levels (29.1+/-20.4 and 11.0+/-12.0 microg/L, respectively). Log-normalized MMP-2, MMP-9, and TIMP-1 concentrations in sputum were not significantly different between towns. However, after adjusting for town, asthma, diabetes, urinary monomethylarsonic acid/inorganic arsenic, and smoking history, total urinary arsenic was negatively associated with MMP-2 and TIMP-1 levels in sputum and positively associated with the ratio of MMP-2/TIMP-1 and MMP-9/TIMP-1 in sputum. Increased sputum proteinase/antiproteinase activity suggests a potential toxic mechanism for low-level arsenic exposure.
    • Phenylethyl isothiocyanate and its N-acetylcysteine conjugate suppress the metastasis of SK-Hep1 human hepatoma cells.

      Hwang, Eun-Sun; Lee, Hyong Joo (2006-12)
      Phenylethyl isothiocyanate (PEITC), a hydrolysis compound of gluconasturtiin, is metabolized to N-acetylcysteine (NAC)-PEITC in the body after the consumption of cruciferous vegetables. We observed an inhibitory effect of PEITC and its metabolite NAC-PEITC on cancer cell proliferation, adhesion, invasion, migration and metastasis in SK-Hep1 human hepatoma cells. PEITC and NAC-PEITC suppressed SK-Hep1 cell proliferation in a dose-dependent manner, and exposure to 10 microM PEITC or NAC-PEITC reduced cell proliferation by 25% and 30%, respectively. NAC-PEITC inhibited cancer cell adhesion, invasion and migration to a similar or to an even larger degree than PEITC. The expression of matrix metalloproteinase (MMP) 2, MMP-9 and membrane type 1 matrix metalloproteinase (MT1-MMP) is a known risk factor for metastatic disease. Gelatin zymography analysis revealed a significant downregulation of MMP-2/MMP-9 protein expression in SK-Hep1 cells treated with 0.1-5 microM PEITC or NAC-PEITC. PEITC and NAC-PEITC treatment caused dose-dependent decreases in MMP-2/MMP-9 and MT1-MMP mRNA levels, as determined by reverse transcription polymerase chain reaction. PEITC and NAC-PEITC also increased the mRNA levels of tissue inhibitors of matrix metalloproteinase (TIMPs) 1 and 2. Our data suggest that this inhibition is mediated by downregulation of MMP and upregulation of TIMPs.