• Early loss of Fhit in the respiratory tract of rodents exposed to environmental cigarette smoke.

      D'Agostini, Francesco; Izzotti, Alberto; Balansky, Roumen; Zanesi, Nicola; Croce, Carlo M.; De Flora, Silvio (2006-04-01)
      The Fhit gene, encompassing the most active common human chromosomal fragile region, FRA3B, has been shown to act as a tumor suppressor. Several studies have shown significant Fhit alterations or Fhit protein loss in lung cancers from smokers compared with lung cancers from nonsmokers. To evaluate the role of Fhit under controlled experimental conditions, we exposed rodents to environmental cigarette smoke (ECS) and evaluated Fhit expression or Fhit protein in the respiratory tract. After 14 days of exposure to ECS, loss of Fhit protein in the bronchial/bronchiolar epithelium affected half of the tested B6-129(F(1)) mice, either wild type or Fhit(+/-). After 28 days, it affected the vast majority of the tested SKH-1 hairless mice and of A/J mice and all (UL53-3 x A/J)F(1) mice, either wild type or P53(+/-). In Sprague-Dawley rats, exposure to ECS for up to 30 days caused a time-dependent loss of Fhit in pulmonary alveolar macrophages. Moreover, ECS down-regulated Fhit expression and significantly decreased Fhit protein in the rat bronchial epithelium. The oral administration of N-acetylcysteine attenuated the ECS-related loss of Fhit, whereas oltipraz, 5,6-benzoflavone, phenethyl isothiocyanate, and indole 3-carbinol, and their combinations had no significant effect. Parallel studies evaluated a variety of molecular, biochemical, and cytogenetic alterations in the respiratory tract of the same animals. In conclusion, there is unequivocal evidence that Fhit is an early, critical target in smoke-related lung carcinogenesis in rodents, and that certain chemopreventive agents can attenuate the occurrence of this gene alteration.
    • Phenylethyl isothiocyanate and its N-acetylcysteine conjugate suppress the metastasis of SK-Hep1 human hepatoma cells.

      Hwang, Eun-Sun; Lee, Hyong Joo (2006-12)
      Phenylethyl isothiocyanate (PEITC), a hydrolysis compound of gluconasturtiin, is metabolized to N-acetylcysteine (NAC)-PEITC in the body after the consumption of cruciferous vegetables. We observed an inhibitory effect of PEITC and its metabolite NAC-PEITC on cancer cell proliferation, adhesion, invasion, migration and metastasis in SK-Hep1 human hepatoma cells. PEITC and NAC-PEITC suppressed SK-Hep1 cell proliferation in a dose-dependent manner, and exposure to 10 microM PEITC or NAC-PEITC reduced cell proliferation by 25% and 30%, respectively. NAC-PEITC inhibited cancer cell adhesion, invasion and migration to a similar or to an even larger degree than PEITC. The expression of matrix metalloproteinase (MMP) 2, MMP-9 and membrane type 1 matrix metalloproteinase (MT1-MMP) is a known risk factor for metastatic disease. Gelatin zymography analysis revealed a significant downregulation of MMP-2/MMP-9 protein expression in SK-Hep1 cells treated with 0.1-5 microM PEITC or NAC-PEITC. PEITC and NAC-PEITC treatment caused dose-dependent decreases in MMP-2/MMP-9 and MT1-MMP mRNA levels, as determined by reverse transcription polymerase chain reaction. PEITC and NAC-PEITC also increased the mRNA levels of tissue inhibitors of matrix metalloproteinase (TIMPs) 1 and 2. Our data suggest that this inhibition is mediated by downregulation of MMP and upregulation of TIMPs.