• Characterization of 67 kD laminin receptor, a protein whose gene is overexpressed on treatment of cells with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide.

      An, She-Juan; Chen, Jia-Kun; Chen, Hua-jie; Chang, Wei; Jiang, Yi-Guo; Wei, Qing-Yi; Chen, Xue-Min (2006-04)
      The molecular mechanisms potentially related to tumorigenesis induced by anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) were investigated by suppression subtractive hybridization of the human bronchial epithelial cells (16HBE) carcinoma induced by BPDE-transformed 16HBE cells (16HBE-C). The 67 kD laminin receptor gene (67LR1) is one of the screened overexpressed genes in 16HBE-C cells when compared with 16HBE. In order to understand the main functions of 67LR1 gene, we amplified the full length of 67LR1 gene using reverse transcription-polymerase chain reaction (RT-PCR) method. The amplified gene products were inserted into pcDNA 3.1 Directional TOPO expression vector. We then transfected 16HBE cells with this vector and derived stable transfected 16HBE cell lines containing the 67LR1 gene by using lipofectin and G418 selection protocols. The expression products of transfected genes were analyzed by semiquantitative RT-PCR. Soft agar growth assay was carried out to identify the malignant features of 67LR1 gene. The stable transfected cell lines can form colonies in soft agar. Further, the transfected cells showed morphological changes compared to the control cells, such as the obvious pseudopods. These data suggest that the 67LR1 gene may be related to malignant transformation induced by the anti-BPDE. The 67LR1 protein may be related to the directionality of cell movement.
    • Increasing exposure levels cause an abrupt change in the absorption and metabolism of acutely inhaled benzo(a)pyrene in the isolated, ventilated, and perfused lung of the rat.

      Ewing, Per; Blomgren, Bo; Ryrfeldt, Ake; Gerde, Per (2006-06)
      The carcinogenic polycyclic aromatic hydrocarbons (PAHs) are active primarily at the site of entry to the body. Lung cancer following inhalation of PAH-containing aerosols such as tobacco smoke is one likely example. A suggested mechanism for this site preference is a slow passage of the highly lipophilic PAHs through the thicker epithelia of the conducting airways, accompanied by substantial local metabolism in airway epithelium. However, it is likely that the airway epithelium will become saturated with PAHs at surprisingly low exposure levels. The purpose of this research was to quantify the level of saturation for inhaled benzo(a)pyrene (BaP) in the isolated, perfused lung (IPL) of the rat. BaP was coated onto carrier particles of silica 3.5 microm diameter at three different levels. The DustGun aerosol generator was then used to deliver respectively 2.2, 36, and 8400 ng of BaP to the IPL with the carrier particles in less than 1 min. For 77 min after the exposure, single-pass perfusate was collected from the lungs. Lungs were then removed and, with the perfusate, analyzed for BaP and metabolites. Results show that the absorption and metabolism of inhaled BaP in the lungs was highly dose dependent. At low exposure levels absorption of BaP in the mucosa was proportional to the concentration in the air/blood barrier and proceeded with substantial local metabolism. At higher exposure levels the capacity of the epithelium to dissolve and metabolize BaP became saturated, and the absorption rate remained constant until crystalline BaP had dissolved, and the process proceeded with much smaller fractions of BaP metabolites produced in the mucosa. This phenomenon may explain the well-known difficulties of inducing lung cancer in laboratory animals with inhalants containing carcinogenic PAHs, where similar lifespan exposures are used as humans may experience but with much higher dose rates.
    • Inhibition of hepatocarcinogenesis by the deletion of the p50 subunit of NF-kappaB in mice administered the peroxisome proliferator Wy-14,643.

      Glauert, Howard P.; Eyigor, Aysegul; Tharappel, Job C.; Cooper, Simon; Lee, Eun Y.; Spear, Brett T. (2006-04)
      Wy-14,643 (WY) is a hypolipidemic drug that induces hepatic peroxisome proliferation and tumors in rodents. We previously showed that peroxisome proliferators increase NF-kappaB DNA binding activity in rats, mice, and hepatoma cell lines, and that mice deficient in the p50 subunit of NF-kappaB had much lower cell proliferation in response to the peroxisome proliferator ciprofibrate. In this study we examined the promotion of hepatocarcinogenesis by WY in the p50 knockout (-/-) mice. The p50 -/- and wild type mice were first administered diethylnitrosamine (DEN) as an initiating agent. Mice were then fed a control diet or a diet containing 0.05% WY for 38 weeks. Wild-type mice receiving DEN only developed a low incidence of tumors, and the majority of wild-type mice receiving both DEN and WY developed tumors. However, no tumors were seen in any of the p50 -/- mice. Cell proliferation and apoptosis were measured in hepatocytes by BrdU labeling and the TUNEL assay, respectively. Treatment with DEN + WY increased both cell proliferation and apoptosis in both the wild-type and p50 -/- mice; DEN treatment alone has no effect. In the DEN/WY-treated mice, cell proliferation and apoptosis were slightly lower in the p50 -/- mice than in the wild-type mice. These data demonstrate that NF-kappaB is involved in the promotion of hepatic tumors by the peroxisome proliferator WY; however, the difference in tumor incidence could not be attributed to alterations in either cell proliferation or apoptosis.