The environmental pollutant and carcinogen 3-nitrobenzanthrone induces cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase in rat lung and kidney, thereby enhancing its own genotoxicity.
Name:
Publisher version
View Source
Access full-text PDFOpen Access
View Source
Check access options
Check access options
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Stiborova, MarieDracinska, Helena
Mizerovska, Jana
Frei, Eva
Schmeiser, Heinz H.
Hudecek, Jiri
Hodek, Petr
Phillips, David H.
Arlt, Volker M.
Issue Date
2008-05-02
Metadata
Show full item recordAbstract
3-Nitrobenzanthrone (3-NBA) is a carcinogen occurring in diesel exhaust and air pollution. Using the (32)P-postlabelling method, we found that 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), are activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and kidney. Each compound generated identical five DNA adducts. We have demonstrated the importance of pulmonary and renal NAD(P)H:quinone oxidoreductase (NQO1) to reduce 3-NBA to species that are further activated by N,O-acetyltransferases and sulfotransferases. Cytochrome P450 (CYP) 1A1 is the essential enzyme for oxidative activation of 3-ABA in microsomes of both organs, while cyclooxygenase plays a minor role. 3-NBA was also investigated for its ability to induce NQO1 and CYP1A1 in lungs and kidneys, and for the influence of such induction on DNA adduct formation by 3-NBA and 3-ABA. When cytosols from rats treated i.p. with 40mg/kg bw of 3-NBA were incubated with 3-NBA, DNA adduct formation was up to 2.1-fold higher than in incubations with cytosols from control animals. This increase corresponded to an increase in protein level and enzymatic activity of NQO1. Incubations of 3-ABA with microsomes of 3-NBA-treated rats led to up to a fivefold increase in DNA adduct formation relative to controls. The stimulation of DNA adduct formation correlated with the potential of 3-NBA to induce protein expression and activity of CYP1A1. These results demonstrate that 3-NBA is capable to induce NQO1 and CYP1A1 in lungs and kidney of rats thereby enhancing its own genotoxic and carcinogenic potential.Citation
Toxicology 2008, 247 (1):11-22Journal
ToxicologyPubMed ID
18329153Type
ArticleLanguage
enISSN
0300-483XSponsors
This work was supported in part by Grant Agency of the Czech Republic, grant 303/05/2195, Ministry of Education of the Czech Republic, grant MSM0021620808 and by Cancer Research UK. V.M. Arlt and D.H. Phillips are partners of ECNIS (Environmental Cancer Risk, Nutrition and Individual Susceptibility), a network of excellence operating within the European Union 6th Framework Program, Priority 5: “Food Quality and Safety” (Contract No. 513943).ae974a485f413a2113503eed53cd6c53
10.1016/j.tox.2008.01.018
Scopus Count
Collections