Recent Submissions

  • Multiple anticancer effects of damsin and coronopilin isolated from Ambrosia arborescens on cell cultures.

    Villagomez, Rodrigo; Rodrigo, Gloria C.; Collado, Isidro G.; Calzado, Marco A.; Muñoz, Eduardo; Åkesson, Björn; Sterner, Olov; Almanza, Giovanna R.; Duan, Rui-Dong (2013-09)
    Terpenoids in plants are important sources for drug discovery. In this study, we extracted damsin and coronopilin, two sesquiterpene lactones, from Ambrosia arborescens and examined their anticancer effects on cell cultures. Damsin and coronopilin inhibited cell proliferation, DNA biosynthesis and formation of cytoplasmic DNA histone complexes in Caco-2 cells, with damsin being more potent than coronopilin. Further studies using the luciferase reporter system showed that damsin and coronopilin also inhibited expressions of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-3 (STAT3), indicating that these sesquiterpenes can interfere with NF-κB and STAT3 pathways. Finally, we examined the effects of two synthetic dibrominated derivatives of damsin, 11α,13-dibromodamsin and 11β,13-dibromodamsin. While bromination appeared to weaken the antiproliferative effects of damsin, the β epimer had strong inhibitory effects on STAT3 activation. In conclusion, the sesquiterpene lactones damsin and coronopilin have inhibitory effects on cell proliferation, DNA biosynthesis and NF-κB and STAT3 pathways, thus being potentially important for discovery of drugs against cancer.
  • Rotating night shift work and polymorphism of genes important for the regulation of circadian rhythm.

    Reszka, Edyta; Peplonska, Beata; Wieczorek, Edyta; Sobala, Wojciech; Bukowska, Agnieszka; Gromadzinska, Jolanta; Lie, Jenny-Anne; Kjuus, Helge; Wasowicz, Wojciech (2013-03-01)
    These results suggest that CRY1 (rs8192440) polymorphism may influence the adaptation to the rotating night shift work among nurses and midwives.
  • 8-Oxo-7,8-dihydroguanine and uric acid as efficient predictors of survival in colon cancer patients.

    Dziaman, Tomasz; Banaszkiewicz, Zbigniew; Roszkowski, Krzysztof; Gackowski, Daniel; Wisniewska, Ewa; Rozalski, Rafał; Foksinski, Marek; Siomek, Agnieszka; Speina, Elzbieta; Winczura, Alicja; Marszalek, Andrzej; Tudek, Barbara; Olinski, Ryszard (2013-07-05)
    The aim of this work was to answer the question whether the broad range of parameters which describe oxidative stress and oxidatively damaged DNA and repair are appropriate prognosis factors of colon cancer (CRC) patients survival? The following parameters were analyzed for 89 CRC patients: concentration of uric acid and vitamins A, E, C in plasma; levels of 8-oxodGuo (8-oxo-7,8-dihydro-2'-deoxyguanosine) in DNA of leukocyte and colon tissues; urinary excretion rates of 8-oxodGuo and 8-oxoGua (8-oxo-7,8-dihydroguanine); the activity and mRNA or protein level of repair enzymes OGG1, APE1, ANPG, TDG and PARP1. All DNA modifications and plasma antioxidants were analyzed using high performance liquid chromatography (HPLC) or HPLC/gas chromatography-mass spectrometry techniques. Expression of repair proteins was analyzed by QPCR, Western or immunohistochemistry methods. Longer survival coincided with low levels of 8-oxodGuo/8oxoGua in urine and 8-oxodGuo in DNA as well as with high concentration of uric acid plasma level. In contrast to expectations, longer survival coincided with lower mRNA level in normal colon tissue of the main 8-oxoGua DNA glycosylase, OGG1, but no association was found for PARP-1 expression. When analyzing simultaneously two parameters the discriminating power increased significantly. Combination of low level of urinary 8-oxoGua together with low level of 8-oxodGuo in leukocyte (both below median value) or high concentration of plasma uric acid (above median value) have the best prediction power. Since prediction value of these parameters seems to be comparable to conventional staging procedure, they could possibly be used as markers to predict clinical success in CRC treatment.
  • Ethics and data protection in human biomarker studies in environmental health.

    Casteleyn, Ludwine; Dumez, Birgit; Van Damme, Karel; Anwar, Wagida A. (2013-08)
    Human biomarker studies in environmental health are essential tools to study the relationship between health and environment. They should ultimately contribute to a better understanding of environmentally induced adverse health effects and to appropriate preventive actions. To ensure the protection of the rights and dignity of study participants a complex legal and ethical framework is applied, consisting of several international directives, conventions, and guidelines, whether or not translated in domestic laws. Main characteristics of ethics and data protection in studies using biomarkers in the field of environmental health are summarized and current discussions on related questions and bottlenecks highlighted. In the current regulatory context, dominated by the protection of the individual study participant, difficulties are reported due to the different interpretation and implementation of the regulations of concern within and across borders. Advancement of consistency and compatibility is recommended and efforts are ongoing. An increasing demand for secondary use of data and samples poses additional challenges in finding a right balance between the individual rights of the study participants on the one hand and the common interest of, and potential benefit for the public or community at large on the other. Ethics committees could play a key role in assessing problems originating from the sometimes competing needs at individual and societal level. Building trust in science amongst (potential) study participants and within the community allows the inclusion of arguments from the societal perspective. This requires increased attention for respectful communication efforts. Striving for public participation in decision making processes may promote policy relevant research and the related translation of study results into action.
  • Sources of pre-analytical variations in yield of DNA extracted from blood samples: analysis of 50,000 DNA samples in EPIC.

    Caboux, Elodie; Lallemand, Christophe; Ferro, Gilles; Hémon, Bertrand; Mendy, Maimuna; Biessy, Carine; Sims, Matt; Wareham, Nick; Britten, Abigail; Boland, Anne; Hutchinson, Amy; Siddiq, Afshan; Vineis, Paolo; Riboli, Elio; Romieu, Isabelle; Rinaldi, Sabina; Gunter, Marc J.; Peeters, Petra H. M.; van der Schouw, Yvonne T.; Travis, Ruth; Bueno-de-Mesquita, H Bas; Canzian, Federico; Sánchez, Maria-José; Skeie, Guri; Olsen, Karina Standahl; Lund, Eiliv; Bilbao, Roberto; Sala, Núria; Barricarte, Aurelio; Palli, Domenico; Navarro, Carmen; Panico, Salvatore; Redondo, Maria Luisa; Polidoro, Silvia; Dossus, Laure; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Françoise; Trichopoulou, Antonia; Trichopoulos, Dimitrios; Lagiou, Pagona; Boeing, Heiner; Fisher, Eva; Tumino, Rosario; Agnoli, Claudia; Hainaut, Pierre (2012)
    The European Prospective Investigation into Cancer and nutrition (EPIC) is a long-term, multi-centric prospective study in Europe investigating the relationships between cancer and nutrition. This study has served as a basis for a number of Genome-Wide Association Studies (GWAS) and other types of genetic analyses. Over a period of 5 years, 52,256 EPIC DNA samples have been extracted using an automated DNA extraction platform. Here we have evaluated the pre-analytical factors affecting DNA yield, including anthropometric, epidemiological and technical factors such as center of subject recruitment, age, gender, body-mass index, disease case or control status, tobacco consumption, number of aliquots of buffy coat used for DNA extraction, extraction machine or procedure, DNA quantification method, degree of haemolysis and variations in the timing of sample processing. We show that the largest significant variations in DNA yield were observed with degree of haemolysis and with center of subject recruitment. Age, gender, body-mass index, cancer case or control status and tobacco consumption also significantly impacted DNA yield. Feedback from laboratories which have analyzed DNA with different SNP genotyping technologies demonstrate that the vast majority of samples (approximately 88%) performed adequately in different types of assays. To our knowledge this study is the largest to date to evaluate the sources of pre-analytical variations in DNA extracted from peripheral leucocytes. The results provide a strong evidence-based rationale for standardized recommendations on blood collection and processing protocols for large-scale genetic studies.
  • Effect of blood storage conditions on DNA repair capacity measurements in peripheral blood mononuclear cells.

    Allione, Alessandra; Porcedda, Paola; Russo, Alessia; Ricceri, Fulvio; Simonelli, Valeria; Minoprio, Anna; Guarrera, Simonetta; Pardini, Barbara; Mazzei, Filomena; Dogliotti, Eugenia; Giachino, Claudia; Matullo, Giuseppe (2013-05-30)
    Due to the great number of genes involved in DNA repair and the interactions among the pathways responsible for the repair of different types of DNA damage, there is an increasing need for simple and reliable approaches to phenotypically assess DNA repair capacity (DRC). The use of peripheral blood mononuclear cells (PBMCs) in DRC assays is particularly useful for human monitoring studies. However, in such studies it is not always possible to collect and process samples on the same day as the blood is taken. We performed a genotype-phenotype correlation study on DRC on 225 healthy subjects. Due to the large number of blood samples to be processed, PBMCs were either isolated and cryopreserved on the same day of blood collection (day 1) or on the following day after 24h blood storage at room temperature (day 2-RT). Samples processed in different days showed a significant difference in the DRC evaluated as 8-oxoguanine glycosylase activity (OGG assay) in cell extracts (p<0.0001) and as benzo[a]pyrene diol epoxide (BPDE)-induced damage repair by the comet assay (p=0.05). No apparent effect of the blood storage conditions on the outcome of γ-ray induced H2AX phosphorylation assay was reported. These results prompted us to further analyze the effects of blood storage conditions by performing a validation study. Three blood samples were simultaneously taken from ten healthy donors, PBMCs were isolated and cryopreserved as follows: immediately after blood collection (day 1); on the following day, after blood storage at RT (day 2-RT); or after blood storage at 4°C (day 2-4°C). DRC was then evaluated using phenotypic assays. The γ-ray induced H2AX phosphorylation assay has been confirmed as the only assay that showed good reproducibility independently of the blood storage conditions. The measurement of OGG assay was most affected by the blood storage conditions.
  • DNA-repair measurements by use of the modified comet assay: An inter-laboratory comparison within the European Comet Assay Validation Group (ECVAG).

    Godschalk, Roger W. L.; Ersson, Clara; Riso, Patrizia; Porrini, Marisa; Langie, Sabine A. S.; van Schooten, Frederik-Jan; Azqueta, Amaya; Collins, Andrew R.; Jones, George D. D.; Kwok, Rachel W. L.; Phillips, David H.; Sozeri, Osman; Allione, Alessandra; Matullo, Giuseppe; Möller, Lennart; Forchhammer, Lykke; Loft, Steffen; Møller, Peter (2013-09)
    The measurement of DNA-repair activity by extracts from cells or tissues by means of the single-cell gel electrophoresis (comet) assay has a high potential to become widely used in biomonitoring studies. We assessed the inter-laboratory variation in reported values of DNA-repair activity on substrate cells that had been incubated with Ro19-8022 plus light to generate oxidatively damaged DNA. Eight laboratories assessed the DNA-repair activity of three cell lines (i.e. one epithelial and two fibroblast cell lines), starting with cell pellets or with cell extracts provided by the coordinating laboratory. There was a large inter-laboratory variation, as evidenced by the range in the mean level of repair incisions between the laboratory with the lowest (0.002incisions/10(6)bp) and highest (0.988incisions/10(6)bp) incision activity. Nevertheless, six out of eight laboratories reported the same cell line as having the highest level of DNA-repair activity. The two laboratories that reported discordant results (with another cell line having the highest level of DNA-repair activity) were those that reported to have little experience with the modified comet assay to assess DNA repair. The laboratories were also less consistent in ordering the repair activity of the other two cell lines, probably because the DNA-repair activity by extracts from these cell lines were very similar (on average approximately 60-65% of the cell line with the highest repair capacity). A significant correlation was observed between the repair activity found in the provided and the self-made cell extracts (r=0.71, P<0.001), which indicates that the predominant source for inter-laboratory variation is derived from the incubation of the extract with substrate cells embedded in the gel. Overall, we conclude that the incubation step of cell extracts with the substrate cells can be identified as a major source of inter-laboratory variation in the modified comet assay for base-excision repair.
  • Association between 8-oxo-7,8-dihydro-2'-deoxyguanosine Excretion and Risk of Postmenopausal Breast Cancer: Nested Case-Control Study.

    Loft, Steffen; Olsen, Anja; Møller, Peter; Poulsen, Henrik E.; Tjønneland, Anne (2013-07)
    Our results suggest that oxidative stress with damage to DNA is important for the development of breast cancer. Cancer Epidemiol Biomarkers Prev; 22(7); 1289-96. ©2013 AACR.
  • Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA.

    Loft, Steffen; Danielsen, Pernille; Løhr, Mille; Jantzen, Kim; Hemmingsen, Jette G.; Roursgaard, Martin; Karotki, Dorina Gabriela; Møller, Peter (2012-02-15)
    Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors, reflecting the rate of damage in steady state. A common genetic OGG1 variant may affect the activity and was associated with increased levels of oxidized purines in leukocytes without apparent effect on 8-oxoGua excretion or major change in cancer risk. 8-OxoGua excretion has been associated with exposure to air pollution, toxic metals, tobacco smoke and low plasma antioxidant levels, whereas fruit and vegetable intake or dietary interventions showed no association. In rodent studies some types of feed may be source of 8-oxoGua in collected urine. Of cancer therapies, cisplatin increased 8-oxoGua excretion, whereas radiotherapy only showed such effects in experimental animals. Case-control studies found high excretion of 8-oxoGua in relation to cancer, dementia and celiac disease but not hemochromatosis, although associations could be a consequence rather than reflecting causality of disease. One prospective study found increased risk of developing lung cancer among non-smokers associated with high excretion of 8-oxoGua. Urinary excretion of 8-oxoGua is a promising biomarker of oxidatively damaged DNA.
  • LC-QTOF/MS metabolomic profiles in human plasma after a 5-week high dietary fiber intake.

    Johansson-Persson, Anna; Barri, Thaer; Ulmius, Matilda; Onning, Gunilla; Dragsted, Lars Ove (2013-05)
    The objective was to investigate the alterations of plasma metabolome profiles to identify exposure and effect markers of dietary fiber intake. Subjects (n = 25) aged 58.6 (1.1) years (mean and SD) with a body mass index of 26.6 (0.5) kg/m(2) were given a high fiber (HF) and a low fiber (LF) diet, in a 5-week randomized controlled crossover intervention. The HF diet consisted of oat bran, rye bran, and sugar beet fiber incorporated into test food products, whereas the LF diet was made of equivalent food products to the HF diet, but without adding fibers. Blood plasma samples were collected at the start and end of each intervention period and analyzed by LC-QTOF/MS. In total, 6 features in positive mode and 14 features in negative mode were significantly different between the HF and the LF diet (p < 0.01, q < 0.05). Two markers, 2,6-dihydroxybenzoic acid and 2-aminophenol sulfate, were increased after HF diet, along with a tentatively identified saponin derived from oat avenacosides. The untargeted metabolomics approach enabled the identification of two new markers of dietary fiber intake in human plasma. Further studies will be needed to verify if these markers could serve as compliance markers of fiber intake.
  • A high intake of dietary fiber influences C-reactive protein and fibrinogen, but not glucose and lipid metabolism, in mildly hypercholesterolemic subjects.

    Johansson-Persson, Anna; Ulmius, Matilda; Cloetens, Lieselotte; Karhu, Toni; Herzig, Karl-Heinz; Onning, Gunilla (2013-02-07)
    PURPOSE: The aim of the study was to investigate how a diet high in dietary fiber, with several fiber sources included, modulates glucose and lipid metabolism and the inflammatory response in humans. METHODS: Subjects (n = 25) aged 58.6 (1.1) years (mean and SD) with a BMI of 26.6 (0.5) kg/m(2) and a total cholesterol (TC) of 5.8 (0.1) mmol/L (mean and SEM) were given a high fiber (HF) and low fiber (LF) diet, in a randomized controlled 5-week crossover intervention, separated by a 3-week washout. The HF diet consisted of oat bran, rye bran, and sugar beet fiber incorporated into test food products; one bread roll, one ready meal, and two beverages consumed daily. Equivalent food products, without added fibers, were provided in the LF diet. RESULTS: Total dietary fiber intake was 48.0 g and 30.2 g per day for the HF and LF diet, respectively. Significant reduction in C-reactive protein (CRP) was observed between the diets (P = 0.017) and a significant reduction in fibrinogen within the HF diet (P = 0.044). There were no significant effects in other measured circulating cytokines or in glucose, insulin, and lipid levels. CONCLUSIONS: Our study suggests that a 5-week high dietary fiber intake of oat bran, rye bran, and sugar beet fiber might reduce the low-grade inflammatory response measured as CRP which could, together with reduced fibrinogen, help to prevent the risk of cardiovascular disease.
  • An ECVAG inter-laboratory validation study of the comet assay: inter-laboratory and intra-laboratory variations of DNA strand breaks and FPG-sensitive sites in human mononuclear cells.

    Ersson, Clara; Møller, Peter; Forchhammer, Lykke; Loft, Steffen; Azqueta, Amaya; Godschalk, Roger W. L.; van Schooten, Frederik-Jan; Jones, George D. D.; Higgins, Jennifer A.; Cooke, Marcus S.; Mistry, Vilas; Karbaschi, Mahsa; Phillips, David H.; Sozeri, Osman; Routledge, Michael N.; Nelson-Smith, Kirsty; Riso, Patrizia; Porrini, Marisa; Matullo, Giuseppe; Allione, Alessandra; Stepnik, Maciej; Ferlinska, Magdalena; Teixeira, João Paulo; Costa, Solange; Corcuera, Laura-Ana; López de Cerain, Adela; Laffon, Blanca; Valdiglesias, Vanessa; Collins, Andrew R.; Möller, Lennart (2013-02-27)
    The alkaline comet assay is an established, sensitive method extensively used in biomonitoring studies. This method can be modified to measure a range of different types of DNA damage. However, considerable differences in the protocols used by different research groups affect the inter-laboratory comparisons of results. The aim of this study was to assess the inter-laboratory, intra-laboratory, sample and residual (unexplained) variations in DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites measured by the comet assay by using a balanced Latin square design. Fourteen participating laboratories used their own comet assay protocols to measure the level of DNA strand breaks and FPG-sensitive sites in coded samples containing peripheral blood mononuclear cells (PBMC) and the level of DNA strand breaks in coded calibration curve samples (cells exposed to different doses of ionising radiation) on three different days of analysis. Eleven laboratories found dose-response relationships in the coded calibration curve samples on two or three days of analysis, whereas three laboratories had technical problems in their assay. In the coded calibration curve samples, the dose of ionising radiation, inter-laboratory variation, intra-laboratory variation and residual variation contributed to 60.9, 19.4, 0.1 and 19.5%, respectively, of the total variation. In the coded PBMC samples, the inter-laboratory variation explained the largest fraction of the overall variation of DNA strand breaks (79.2%) and the residual variation (19.9%) was much larger than the intra-laboratory (0.3%) and inter-subject (0.5%) variation. The same partitioning of the overall variation of FPG-sensitive sites in the PBMC samples indicated that the inter-laboratory variation was the strongest contributor (56.7%), whereas the residual (42.9%), intra-laboratory (0.2%) and inter-subject (0.3%) variations again contributed less to the overall variation. The results suggest that the variation in DNA damage, measured by comet assay, in PBMC from healthy subjects is assay variation rather than variation between subjects.
  • Evidence of exposure to aristolochic acid in patients with urothelial cancer from a Balkan endemic nephropathy region of Romania.

    Schmeiser, Heinz H.; Kucab, Jill E.; Arlt, Volker M.; Phillips, David H.; Hollstein, Monica; Gluhovschi, Gheorghe; Gluhovschi, Cristina; Modilca, Mirela; Daminescu, Liviu; Petrica, Ligia; Velciov, Silvia (2012-10)
    Recently, chronic Aristolochia poisoning was found responsible for the aetiology of Balkan endemic nephropathy (BEN) in Croatia, Serbia, and Bosnia, and diet was the likely route of exposure to aristolochic acid (AA). BEN, often associated with an increased incidence of upper urinary tract carcinoma (UUC), also affects residents of certain rural villages in Romania. AA is a nephrotoxin and human carcinogen that forms DNA adducts after metabolic activation, which induce characteristic TP53 mutations in urothelial tumours. Here we present the first evidence linking AA exposure to UUC in residents of an endemic region in the Romanian Mehedinti County. DNA was extracted from kidney and tumour tissue of seven patients who underwent nephroureterectomy for UUC and resided in BEN villages (endemic group). Five patients with UUC from nonendemic villages served as controls. AA-DNA adducts (7-(deoxyadenosin-N(6) -yl)-aristolactam I), established biomarkers of AA exposure, were identified by (32)P-postlabelling in renal DNA of six patients from the endemic group and in one of the nonendemic group (adduct levels ranged from 0.3 to 6.5 adducts per 10(8) nucleotides). Additionally, an A to T transversion in TP53, a base substitution characteristic of AA mutagenic activity was found in urothelial tumour DNA of one patient from the endemic group. Our results provide a molecular link to the cause of urothelial tumours in BEN regions of Romania indicating that AA is the common aetiological agent for BEN across its numerous geographical foci.
  • Exposure to Polycyclic Aromatic Hydrocarbons Among Never Smokers in Golestan Province, Iran, an Area of High Incidence of Esophageal Cancer - a Cross-Sectional Study with Repeated Measurement of Urinary 1-OHPG in Two Seasons.

    Islami, Farhad; Boffetta, Paolo; Van Schooten, Frederik J.; Strickland, Paul; Phillips, David H.; Pourshams, Akram; Fazel-Tabar Malekshah, Akbar; Godschalk, Roger; Jafari, Elham; Etemadi, Arash; Abubaker, Salahadin; Kamangar, Farin; Straif, Kurt; Møller, Henrik; Schuz, Joachim; Malekzadeh, Reza (2012)
    Studies have suggested a possible role of polycyclic aromatic hydrocarbons (PAHs) in the etiology of esophageal cancer in Golestan Province, Iran, where incidence of this cancer is very high. In order to investigate the patterns of non-smoking related exposure to PAHs in Golestan, we conducted a cross-sectional study collecting questionnaire data, genotyping polymorphisms related to PAH metabolism, and measuring levels of 1-hydroxypyrene glucuronide (1-OHPG), a PAH metabolite, in urine samples collected in two seasons from the same group of 111 randomly selected never-smoking women. Beta-coefficients for correlations between 1-OHPG as dependent variable and other variables were calculated using linear regression models. The creatinine-adjusted 1-OHPG levels in both winter and summer samples were approximately 110 μmol/molCr (P for seasonal difference = 0.40). In winter, red meat intake (β = 0.208; P = 0.03), processed meat intake (β = 0.218; P = 0.02), and GSTT1-02 polymorphism ("null" genotype: β = 0.228; P = 0.02) showed associations with 1-OHPG levels, while CYP1B1-07 polymorphism (GG versus AA + GA genotypes: β = -0.256; P = 0.008) showed an inverse association. In summer, making bread at home (> weekly versus never: β = 0.203; P = 0.04), second-hand smoke (exposure to ≥3 cigarettes versus no exposure: β = 0.254; P = 0.01), and GSTM1-02 "null" genotype (β = 0.198; P = 0.04) showed associations with 1-OHPG levels, but GSTP1-02 polymorphism (CT + TT versus CC: β = -0.218; P = 0.03) showed an inverse association. This study confirms high exposure of the general population in Golestan to PAHs and suggests that certain foods, cooking methods, and genetic polymorphisms increase exposure to PAHs.
  • Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse.

    Siddens, Lisbeth K.; Larkin, Andrew; Krueger, Sharon K.; Bradfield, Christopher A.; Waters, Katrina M.; Tilton, Susan C.; Pereira, Cliff B.; Löhr, Christiane V.; Arlt, Volker M.; Phillips, David H.; Williams, David E.; Baird, William M. (2012-11-01)
    The polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), was compared to dibenzo[def,p]chrysene (DBC) and combinations of three environmental PAH mixtures (coal tar, diesel particulate and cigarette smoke condensate) using a two stage, FVB/N mouse skin tumor model. DBC (4nmol) was most potent, reaching 100% tumor incidence with a shorter latency to tumor formation, less than 20 weeks of 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion compared to all other treatments. Multiplicity was 4 times greater than BaP (400 nmol). Both PAHs produced primarily papillomas followed by squamous cell carcinoma and carcinoma in situ. Diesel particulate extract (1 mg SRM 1650b; mix 1) did not differ from toluene controls and failed to elicit a carcinogenic response. Addition of coal tar extract (1 mg SRM 1597a; mix 2) produced a response similar to BaP. Further addition of 2 mg of cigarette smoke condensate (mix 3) did not alter the response with mix 2. PAH-DNA adducts measured in epidermis 12 h post initiation and analyzed by ³²P post-labeling, did not correlate with tumor incidence. PAH-dependent alteration in transcriptome of skin 12 h post initiation was assessed by microarray. Principal component analysis (sum of all treatments) of the 922 significantly altered genes (p<0.05), showed DBC and BaP to cluster distinct from PAH mixtures and each other. BaP and mixtures up-regulated phase 1 and phase 2 metabolizing enzymes while DBC did not. The carcinogenicity with DBC and two of the mixtures was much greater than would be predicted based on published Relative Potency Factors (RPFs).
  • STrengthening the Reporting of OBservational studies in Epidemiology: Molecular Epidemiology STROBE-ME. An extension of the STROBE statement.

    Gallo, Valentina; Egger, Matthias; McCormack, Valerie; Farmer, Peter B.; Ioannidis, John P. A.; Kirsch-Volders, Micheline; Matullo, Giuseppe; Phillips, David H.; Schoket, Bernadette; Stromberg, Ulf; Vermeulen, Roel; Wild, Christopher; Porta, Miquel; Vineis, Paolo (2012-09)
    Advances in laboratory techniques have led to a rapidly increasing use of biomarkers in epidemiological studies. Biomarkers of internal dose, early biological change, susceptibility, and clinical outcomes are used as proxies for investigating the interactions between external and/or endogenous agents and the body components or processes. The need for improved reporting of scientific research led to influential statements of recommendations such as STrengthening Reporting of Observational studies in Epidemiology (STROBE) statement. The STROBE initiative established in 2004 aimed to provide guidance on how to report observational research. Its guidelines provide a user-friendly checklist of 22 items to be reported in epidemiological studies, with items specific to the three main study designs: cohort studies, case-control studies and cross-sectional studies. The present STrengthening the Reporting of OBservational studies in Epidemiology - Molecular Epidemiology (STROBE-ME) initiative builds on the STROBE Statement implementing 9 existing items of STROBE and providing 17 additional items to the 22 items of STROBE checklist. The additions relate to the use of biomarkers in epidemiological studies, concerning collection, handling and storage of biological samples; laboratory methods, validity and reliability of biomarkers; specificities of study design; and ethical considerations. The STROBE-ME recommendations are intended to complement the STROBE recommendations.
  • Exposure to benzo[a]pyrene of Hepatic Cytochrome P450 Reductase Null (HRN) and P450 Reductase Conditional Null (RCN) mice: Detection of benzo[a]pyrene diol epoxide-DNA adducts by immunohistochemistry and 32P-postlabelling.

    Arlt, Volker M.; Poirier, Miriam C.; Sykes, Sarah E.; John, Kaarthik; Moserova, Michaela; Stiborova, Marie; Wolf, C. Roland; Henderson, Colin J.; Phillips, David H. (2012-09-03)
    Benzo[a]pyrene (BaP) is a widespread environmental carcinogen activated by cytochrome P450 (P450) enzymes. In Hepatic P450 Reductase Null (HRN) and Reductase Conditional Null (RCN) mice, P450 oxidoreductase (Por) is deleted specifically in hepatocytes, resulting in the loss of essentially all hepatic P450 function. Treatment of HRN mice with a single i.p. or oral dose of BaP (12.5 or 125mg/kg body weight) resulted in higher DNA adduct levels in liver (up to 10-fold) than in wild-type (WT) mice, indicating that hepatic P450s appear to be more important for BaP detoxification in vivo. Similar results were obtained in RCN mice. We tested whether differences between hepatocytes and non-hepatocytes in P450 activity may underlie the increased liver BaP-DNA binding in HRN mice. Cellular localisation by immunohistochemistry of BaP-DNA adducts showed that HRN mice have ample capacity for formation of BaP-DNA adducts in liver, indicating that the metabolic process does not result in the generation of a reactive species different from that formed in WT mice. However, increased protein expression of cytochrome b(5) in hepatic microsomes of HRN relative to WT mice suggests that cytochrome b(5) may modulate the P450-mediated bioactivation of BaP in HRN mice, partially substituting the function of Por.
  • DNA and protein adducts in human tissues resulting from exposure to tobacco smoke.

    Phillips, David H.; Venitt, Stan (2012-12-15)
    Tobacco smoke contains a variety of genotoxic carcinogens that form adducts with DNA and protein in the tissues of smokers. Not only are these biochemical events relevant to the carcinogenic process, but the detection of adducts provides a means of monitoring exposure to tobacco smoke. Characterization of smoking-related adducts has shed light on the mechanisms of smoking-related diseases and many different types of smoking-derived DNA and protein adducts have been identified. Such approaches also reveal the potential harm of environmental tobacco smoke (ETS) to nonsmokers, infants and children. Because the majority of tobacco-smoke carcinogens are not exclusive to this source of exposure, studies comparing smokers and nonsmokers may be confounded by other environmental sources. Nevertheless, certain DNA and protein adducts have been validated as biomarkers of exposure to tobacco smoke, with continuing applications in the study of ETS exposures, cancer prevention and tobacco product legislation. Our article is a review of the literature on smoking-related adducts in human tissues published since 2002.
  • Variation in PAH-related DNA adduct levels among non-smokers: The role of multiple genetic polymorphisms and nucleotide excision repair phenotype.

    Etemadi, Arash; Islami, Farhad; Phillips, David H.; Godschalk, Roger; Golozar, Asieh; Kamangar, Farin; Malekshah, Akbar Fazel-Tabar; Pourshams, Akram; Elahi, Seerat; Ghojaghi, Farhad; Strickland, Paul T.; Taylor, Philip R.; Boffetta, Paolo; Abnet, Christian C.; Dawsey, Sanford M.; Malekzadeh, Reza; van Schooten, Frederik J. (2012-11-23)
    Polycyclic aromatic hydrocarbons (PAHs) likely play a role in many cancers even in never-smokers. We tried to find a model to explain the relationship between variation in PAH-related DNA adduct levels among people with similar exposures, multiple genetic polymorphisms in genes related to metabolic and repair pathways, and nucleotide excision repair (NER) capacity. In 111 randomly selected female never-smokers from the Golestan Cohort Study in Iran, we evaluated 21 SNPs in 14 genes related to xenobiotic metabolism and 12 SNPs in eight DNA repair genes. NER capacity was evaluated by a modified comet assay, and aromatic DNA adduct levels were measured in blood by32P-postlabeling. Multivariable regression models were compared by Akaike's information criterion (AIC). Aromatic DNA adduct levels ranged between 1.7 and 18.6 per 10(8) nucleotides (mean: 5.8 ± 3.1). DNA adduct level was significantly lower in homozygotes for NAT2 slow alleles and ERCC5 non-risk-allele genotype, and was higher in the MPO homozygote risk-allele genotype. The sum of risk alleles in these genes significantly correlated with the log-adduct level (r = 0.4, p < 0.001). Compared with the environmental model, adding Phase I SNPs and NER capacity provided the best fit, and could explain 17% more of the variation in adduct levels. NER capacity was affected by polymorphisms in the MTHFR and ERCC1 genes. Female non-smokers in this population had PAH-related DNA adduct levels three to four times higher than smokers and occupationally-exposed groups in previous studies, with large inter-individual variation which could best be explained by a combination of Phase I genes and NER capacity.
  • NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I.

    Levova, Katerina; Moserova, Michaela; Nebert, Daniel W.; Phillips, David H.; Frei, Eva; Schmeiser, Heinz H.; Arlt, Volker M.; Stiborova, Marie (2012-12-15)
    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)-the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1⁻/⁻, Cyp1a2⁻/⁻ and Cyp1a1/1a2⁻/⁻ knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential.

View more