• DNA damage and acute toxicity caused by the urban air pollutant 3-nitrobenzanthrone in rats: characterization of DNA adducts in eight different tissues and organs with synthesized standards.

      Nagy, Eszter; Adachi, Shuichi; Takamura-Enya, Takeji; Zeisig, Magnus; Moller, Lennart (2006-08)
      3-Nitrobenzanthrone (3-NBA) is an urban air pollutant and rat lung carcinogen that is among the most potent mutagens yet tested in the Salmonella reversion assay. In the present study, 1 mg 3-NBA was administered orally to female F344 rats and DNA adduct formation was examined in liver, lung, kidney and five sections of the gastrointestinal (GI) tract at 6 hr, and 1, 2, 3, 5, and 10 days after administration. The DNA adduct patterns, analyzed by (32)P-postlabelling followed by HPLC separation, were similar in all tissues and organs. Five of the adduct peaks cochromatographed with synthesized DNA adduct standards. Three of these unequivocally determined standards, dGp-C8-N-ABA, dGp-N2-C2-ABA, and dAp-N6-C2-ABA, were of the nonacetylated type, suggesting that at least part of the pathway for activation of 3-NBA proceeds through O-acetylation of the hydroxylamine intermediate. The two other DNA adduct standards, dGp-C8-C2-N-Ac-ABA, and dGp-N2-C2-N-Ac-ABA, were of the acetylated type, but there was some ambiguity in the characterization of these DNA adducts, since they varied inconsistently between samples and they also aligned with peaks found in controls. At 6 hr after treatment, the level of DNA adducts was highest in glandular stomach (relative adduct labeling (RAL), approximately 70 adducts/10(8) normal nucleotides (NN)); adduct levels in this organ decreased at 24 hr, but increased afterwards. DNA adduct levels in the majority of organs were characterized by an early increase (from 6 hr to 3 days), which was followed by a decrease at 5 days and a maximum level 10 days after administration (RAL approximately 120 adducts/10(8) NN for the lung, kidney and glandular stomach, approximately 80 adducts/10(8) NN for the forestomach and ceacum, and approximately 40 adducts/10(8) NN for the liver, small intestine, and colon). This pattern was consistent with pathological observations during autopsy showing high levels of tissue damage in the GI tract; the tissue damage included hemorrhages, loss of villous surface structure in the small intestine, as well as intestine fragility and oedema of the adipose tissue around the GI-tract. Tissue damage decreased and DNA adduct levels increased at 10 days after administration. These observations suggest that 3-NBA not only exerts acute toxic effects, but that the bioavailability is affected by storage in tissues and later becomes available, resulting in the increased DNA adduct levels at the later time points of collection.
    • The environmental pollutant and carcinogen 3-nitrobenzanthrone induces cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase in rat lung and kidney, thereby enhancing its own genotoxicity.

      Stiborova, Marie; Dracinska, Helena; Mizerovska, Jana; Frei, Eva; Schmeiser, Heinz H.; Hudecek, Jiri; Hodek, Petr; Phillips, David H.; Arlt, Volker M. (2008-05-02)
      3-Nitrobenzanthrone (3-NBA) is a carcinogen occurring in diesel exhaust and air pollution. Using the (32)P-postlabelling method, we found that 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), are activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and kidney. Each compound generated identical five DNA adducts. We have demonstrated the importance of pulmonary and renal NAD(P)H:quinone oxidoreductase (NQO1) to reduce 3-NBA to species that are further activated by N,O-acetyltransferases and sulfotransferases. Cytochrome P450 (CYP) 1A1 is the essential enzyme for oxidative activation of 3-ABA in microsomes of both organs, while cyclooxygenase plays a minor role. 3-NBA was also investigated for its ability to induce NQO1 and CYP1A1 in lungs and kidneys, and for the influence of such induction on DNA adduct formation by 3-NBA and 3-ABA. When cytosols from rats treated i.p. with 40mg/kg bw of 3-NBA were incubated with 3-NBA, DNA adduct formation was up to 2.1-fold higher than in incubations with cytosols from control animals. This increase corresponded to an increase in protein level and enzymatic activity of NQO1. Incubations of 3-ABA with microsomes of 3-NBA-treated rats led to up to a fivefold increase in DNA adduct formation relative to controls. The stimulation of DNA adduct formation correlated with the potential of 3-NBA to induce protein expression and activity of CYP1A1. These results demonstrate that 3-NBA is capable to induce NQO1 and CYP1A1 in lungs and kidney of rats thereby enhancing its own genotoxic and carcinogenic potential.