• Antiapoptotic effects of dietary antioxidants towards N-nitrosopiperidine and N-nitrosodibutylamine-induced apoptosis in HL-60 and HepG2 cells.

      Garcia, Almudena; Morales, Paloma; Arranz, Nuria; Delgado, Ma Eugenia; Rafter, Joseph; Haza, Ana I. (2009-07)
      The aim of this work was to determine the effect of vitamin C, diallyl disulfide (DADS) and dipropyl disulfide (DPDS) towards N-nitrosopiperidine (NPIP) and N-nitrosodibutylamine (NDBA)-induced apoptosis in human leukemia (HL-60) and hepatoma (HepG2) cell lines using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. None of the vitamin C (5-50 microm), DADS and DPDS (1-5 microm) concentrations selected induced a significant percentage of apoptosis. In simultaneous treatments, vitamin C, DADS and DPDS reduced the apoptosis induced by NPIP and NDBA in HL-60 and HepG2 cells (around 70% of reduction). We also investigated its scavenging activities towards reactive oxygen species (ROS) produced by NPIP and NDBA using 2',7'-dichlorodihydrofluorescein diacetate in both cell lines. ROS production induced by both N-nitrosamine was reduced to control levels by vitamin C (5-50 microm) in a dose-dependent manner. However, DADS (5 microm) increased ROS levels induced by NPIP and NDBA in HL-60 (40 and 20% increase, respectively) and HepG2 cells (18% increase), whereas DPDS was more efficient scavenger of ROS at the lowest concentration (1 microm) in both HL-60 (52 and 25% reduction, respectively) and HepG2 cells (24% reduction). The data demonstrated that the scavenging ability of vitamin C and DPDS could contribute to inhibition of the NPIP- and NDBA-induced apoptosis. However, more than one mechanism, such as inhibition of phase I and/or induction of phase II enzymes, could be implicated in the protective effect of dietary antioxidants towards NPIP- and NDBA-induced apoptosis in HL-60 and HepG2 cells.
    • Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker?

      Loft, Steffen; Moller, Peter; Cooke, Marcus S.; Rozalski, Rafal; Olinski, Ryszard (2008-05)
      Oxidative damage to DNA is regarded as an important step in carcinogenesis. These lesions may arise as a consequence of exposure to xenobiotics, but are also generated as a consequence of endogenous generation of oxidizing compounds. Measurements of oxidative damage to guanines, such as 8-oxo-7, 8-dihydroguanine (8-oxodG) are increasingly being regarded as reliable biomarkers of oxidative stress and they may have a predictive value of cancer risk, although this needs to be established independently in several cohort studies. A survey of intervention studies of the ingestion of antioxidant-containing foods or tablets of antioxidants indicate that about one-third of the studies reported a protective effect in terms of lower levels of oxidative damage to DNA in white blood cells or decreased urinary excretion of 8-oxodG. Although firm conclusions cannot be reached, there appears to be links between ingestion of antioxidants, oxidative damage to DNA, and risk of cancer.
    • Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids.

      Cadet, Jean; Loft, Steffen; Olinski, Ryszard; Evans, Mark D.; Bialkowski, Karol; Richard Wagner, J.; Dedon, Peter C.; Moller, Peter; Greenberg, Marc M.; Cooke, Marcus S. (2012-04)
      A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included.
    • Biomarkers of exposure to vitamins A, C, and E and their relation to lipid and protein oxidation markers.

      Dragsted, Lars O. (2008-05)
      Since antioxidant vitamins may affect an organism's capacity for defence against reactive oxygen species, biological markers of the dietary exposure to these vitamins is of importance. There is also a need of effect biomarkers for determining the ability of these and other antioxidants to increase the overall antioxidant capacity and decrease the oxidative damage occurring in biological samples. This review is concerned with exposure markers and markers of lipid- or protein damage following intervention with vitamins A, C and E. While there are several high quality exposure markers available it is not possible to identify functional markers of lipid or protein oxidation, which respond reliably to human dietary intervention with vitamins A, C or E.
    • Combination of azathioprine and UVA irradiation is a major source of cellular 8-oxo-7,8-dihydro-2'-deoxyguanosine.

      Cooke, Marcus S.; Duarte, Tiago L.; Cooper, Deborah; Chen, Jie; Nandagopal, Sridevi; Evans, Mark D. (2008-12-01)
      Thiopurine antimetabolites, such as azathioprine (Aza) and 6-thioguanine (6-TG), are widely used in the treatment of cancer, inflammatory conditions and organ transplantation patients. Recent work has shown that cells treated with 6-TG and UVA generate ROS, with implied oxidatively generated modification of DNA. In a study of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in renal transplant patients, we provided the first in vivo evidence linking Aza and oxidatively damaged DNA. Using the hOGG1 comet assay, we herein demonstrate high levels of 8-oxodG and alkali-labile sites (ALS) in cells treated with biologically relevant doses of 6-TG, or Aza, plus UVA. This damage was induced dose-dependently. Surprisingly, given the involvement of 6-TG incorporation into DNA in its therapeutic effect, significant amounts of 8-oxodG and ALS were induced in quiescent cells, although less than in proliferating cells. We speculate that some activity of hOGG1 towards unirradiated, 6-TG treated cells, implies possible recognition of 6-TG or derivatives thereof. This is the first report to conclusively demonstrate oxidatively damaged DNA in cells treated with thiopurines and UVA. These data indicate that Aza-derived oxidative stress will occur in the skin of patients on Aza, following even low level UVA exposure. This is a probable contributor to the increased risk of non-melanoma skin cancer in these patients. However, as oxidative stress is unlikely to be involved in the therapeutic effects of Aza, intercepting ROS production in the skin could be a viable route by which this side effect may be minimised.
    • Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes.

      Karlsson, Hanna L.; Cronholm, Pontus; Gustafsson, Johanna; Moller, Lennart (2008-09)
      Since the manufacture and use of nanoparticles are increasing, humans are more likely to be exposed occupationally or via consumer products and the environment. However, so far toxicity data for most manufactured nanoparticles are limited. The aim of this study was to investigate and compare different nanoparticles and nanotubes regarding cytotoxicity and ability to cause DNA damage and oxidative stress. The study was focused on different metal oxide particles (CuO, TiO2, ZnO, CuZnFe2O4, Fe3O4, Fe2O3), and the toxicity was compared to that of carbon nanoparticles and multiwalled carbon nanotubes (MWCNT). The human lung epithelial cell line A549 was exposed to the particles, and cytotoxicity was analyzed using trypan blue staining. DNA damage and oxidative lesions were determined using the comet assay, and intracellular production of reactive oxygen species (ROS) was measured using the oxidation-sensitive fluoroprobe 2',7'-dichlorofluorescin diacetate (DCFH-DA). The results showed that there was a high variation among different nanoparticles concerning their ability to cause toxic effects. CuO nanoparticles were most potent regarding cytotoxicity and DNA damage. The toxicity was likely not explained by Cu ions released to the cell medium. These particles also caused oxidative lesions and were the only particles that induced an almost significant increase (p = 0.058) in intracellular ROS. ZnO showed effects on cell viability as well as DNA damage, whereas the TiO2 particles (a mix of rutile and anatase) only caused DNA damage. For iron oxide particles (Fe3O4, Fe2O3), no or low toxicity was observed, but CuZnFe2O4 particles were rather potent in inducing DNA lesions. Finally, the carbon nanotubes showed cytotoxic effects and caused DNA damage in the lowest dose tested. The effects were not explained by soluble metal impurities. In conclusion, this study highlights the in vitro toxicity of CuO nanoparticles.
    • Different mechanisms involved in apoptosis following exposure to benzo[a]pyrene in F258 and Hepa1c1c7 cells.

      Holme, Jorn A.; Gorria, Morgane; Arlt, Volker M.; Ovrebo, Steinar; Solhaug, Anita; Tekpli, Xavier; Landvik, Nina E.; Huc, Laurence; Fardel, Olivier; Lagadic-Gossmann, Dominique (2007-04-05)
      The present study compares and elucidates possible mechanisms why B[a]P induces different cell signals and triggers apparently different apoptotic pathways in two rather similar cell lines (hepatic epithelial cells of rodents). The rate and maximal capacity of metabolic activation, as measured by the formation of B[a]P-tetrols and B[a]P-DNA adducts, was much higher in mouse hepatoma Hepa1c1c7 cells than in rat liver epithelial F258 cells due to a higher induced level of cyp1a1. B[a]P increased intracellular pH in both cell lines, but this change modulated the apoptotic process only in F258 cells. In Hepa1c1c7 cells reactive oxygen species (ROS) production appeared to be a consequence of toxicity, unlike F258 cells in which it was an initial event. The increased mitochondrial membrane potential found in F258 cells was not observed in Hepa1c1c7 cells. Surprisingly, F258 cells cultured at low cell density were somewhat more sensitive to low (50nM) B[a]P concentrations than Hepa1c1c7 cells. This could be explained partly by metabolic differences at low B[a]P concentrations. In contrast to the Hepa1c1c7 model, no activation of cell survival signals including p-Akt, p-ERK1/2 and no clear inactivation of pro-apoptotic Bad was observed in the F258 model following exposure to B[a]P. Another important difference between the two cell lines was related to the role of Bax and cytochrome c. In Hepa1c1c7 cells, B[a]P exposure resulted in a "classical" translocation of Bax to the mitochondria and release of cytochrome c, whereas in F258 cells no intracellular translocation of these two proteins was seen. These results suggest that the rate of metabolism of B[a]P and type of reactive metabolites formed influence the resulting balance of pro-apoptotic and anti-apoptotic cell signaling, and hence the mechanisms involved in cell death and the chances of more permanent genetic damage.
    • DNA damage in rats after a single oral exposure to diesel exhaust particles.

      Danielsen, Pernille Hogh; Risom, Lotte; Wallin, Hakan; Autrup, Herman; Vogel, Ulla; Loft, Steffen; Moller, Peter (2008-01-01)
      The gastrointestinal route of exposure to particulate matter is important because particles are ingested via contaminated foods and inhaled particles are swallowed when removed from the airways by the mucociliary clearance system. We investigated the effect of an intragastric administration by oral gavage of diesel exhaust particles (DEP) in terms of DNA damage, oxidative stress and DNA repair in colon epithelial cells, liver, and lung of rats. Eight rats per group were exposed to Standard Reference Material 2975 at 0.064 or 0.64 mg/kg bodyweight for 6 and 24 h. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine lesions were observed at the highest dose after 6 and 24 h in all three organs. 8-Oxo-7,8-dihydro-2'-deoxyguanosine is repaired by oxoguanine DNA glycosylase 1 (OGG1); upregulation of this repair system was observed as elevated pulmonary OGG1 mRNA levels after 24 h at both doses of DEP, but not in the colon and liver. A general response of the antioxidant defence system is further indicated by elevated levels of heme oxygenase 1 mRNA in the liver and lung 24 h after administration. The level of bulky DNA adducts was increased in liver and lung at both doses after 6 and 24h (DNA adducts in colon epithelium were not investigated). In summary, DEP administered via the gastrointestinal tract at low doses relative to ambient exposure generates DNA damage and increase the expression of defence mechanisms in organs such as the lung and liver. The oral exposure route should be taken into account in risk assessment of particulate matter.
    • DNA damage induced by micro- and nanoparticles--interaction with FPG influences the detection of DNA oxidation in the comet assay.

      Kain, J.; Karlsson, H. L.; Moller, L. (2012-03-23)
      Reliable methods for evaluation of toxicity from particles, such as manufactured nanoparticles, are needed. One promising tool is the comet assay, often used to measure DNA breaks (strand breaks and alkali-labile sites) as well as oxidatively damaged DNA, the latter by addition of specific DNA repair enzymes such as formamidopyrimidine DNA glycosylase (FPG). The aim of this study was to investigate the use of the comet assay for analysis of DNA oxidation by a range of micro- and nanoparticles in the lung cell lines A549 and BEAS-2B and to test the hypothesis that nanoparticles present in the cells during the assay performance may interact with FPG. This was done by investigating the ability of micro- and nanoparticles (stainless steel, subway particles, MnO(2), Ag, CeO(2), Co(3)O(4), Fe(3)O(4), NiO and SiO(2)) to induce DNA breaks, oxidatively damaged DNA (FPG sites, dominantly 8-oxoguanine), intracellular production of reactive oxygen species (ROS) and non-cellular oxidation of the DNA base guanine, as well as by studying interactions of the particles and their released ions with FPG. Several particles caused DNA breaks, but low levels of FPG sites. The ability of FPG to detect DNA oxidation induced by a photosensitiser was however shown. An oxidative capacity of the particles was indicated by increased levels of intracellular ROS, and especially Ag and subway particles caused non-cellular oxidation of guanine. Incubation of FPG with the particles led to less FPG activity, particularly with nanoparticles of Ag but also with CeO(2), Co(3)O(4) and SiO(2). Further investigations of these particles revealed that for Ag, the decreased activity was mainly due to released Ag ions, whereas for CeO(2) and Co(3)O(4), FPG interactions were due to the particles. We conclude that measurement of oxidatively damaged DNA in cells exposed to nanoparticles may be underestimated in the comet assay due to interactions with FPG.
    • Mechanisms related to the genotoxicity of particles in the subway and from other sources.

      Karlsson, Hanna L.; Holgersson, Asa; Moller, Lennart (2008-03)
      Negative health effects of airborne particles have clearly been shown in epidemiological studies. People get exposed to particles from various sources such as the combustion of, for example, diesel and wood and also from particles arising from tire-road wear. Another source of importance for certain populations is exposure to particles in subway systems. We recently reported that these particles were more genotoxic when compared to that of several other particle types. The aim of this study was to further investigate and compare the toxicity of subway particles and particles from other sources as well as investigate some mechanisms behind the genotoxicity of subway particles. This was done by comparing the ability of subway particles and particles from a street, pure tire-road wear particles, and particles from wood and diesel combustion to cause mitochondrial depolarization and to form intracellular reactive oxygen species (ROS). Furthermore, the genotoxicity and ability to cause oxidative stress was compared to magnetite particles since this is a main component in subway particles. It was concluded that the subway particles and also street particles and particles from wood and diesel combustion caused mitochondrial depolarization. The ability to damage the mitochondria is thus not the only explanation for the high genotoxicity of subway particles. Subway particles also formed intracellular ROS. This effect may be part of the explanation as to why subway particles show such high genotoxicity when compared to that of other particles. Genotoxicity can, however, not be explained by the main component, magnetite, by water-soluble metals, or by intracellular mobilized iron. The genotoxicity is most likely caused by highly reactive surfaces giving rise to oxidative stress.
    • Vitamins at physiological levels cause oxidation to the DNA nucleoside deoxyguanosine and to DNA--alone or in synergism with metals.

      Bergstrom, Therese; Ersson, Clara; Bergman, Jan; Moller, Lennart (2012-03-30)
      Vitamins with antioxidant properties have the ability to act as pro-oxidants, inducing oxidative damage and oxidative stress as opposed to preventing it. While vitamin supplements are commonly consumed, the scientific evidence for their health beneficial effects is inconclusive. In fact, even harmful effects have been reported. The present study aimed to investigate and compare pro-oxidant properties of different antioxidants and vitamins commonly found in dietary supplements, at concentrations of physiological relevance, alone or in combination with metals also found in supplements. Focus was on damages related to DNA. The vitamins' chemical oxidation potencies were studied by measuring the amount of the oxidation product 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formed from the DNA nucleoside deoxyguanosine (dG) after vitamin exposure, using a high-performance liquid chromatography system with electrochemical and ultraviolet detection. To study the vitamins' ability to cause DNA damage to cultured cells, promyelocytic leukemia cells (HL-60) were exposed to vitamins, and strand breaks, alkali-labile sites and oxidative DNA lesions, i.e. formamido pyrimidine DNA glycosylase-sensitive sites, were detected using the comet assay. Vitamins A and C chemically induced oxidation of dG, alone and in synergism with iron or copper, whereas only vitamin C and copper induced DNA damage in cultured cells. Contrary, vitamins B1, B2, B3, B6 and B12, β-carotene, folic acid, α-tocopherol, δ-tocopherol or γ-tocopherol did not induce oxidative damage to dG, while lycopene induced a weak dose-response increase. Taken together, vitamin C and copper stood out with the strongest oxidative potency, which is of potential concern since both substances are commonly found in multivitamins.