• Comparison of genotoxic and inflammatory effects of particles generated by wood combustion, a road simulator and collected from street and subway.

      Karlsson, Hanna L.; Ljungman, Anders G.; Lindbom, John; Moller, Lennart (2006-09-10)
      The health effects of exposure to airborne particles are of increasing concern in society. In order to protect public health, a clarification of the toxic properties of particles from different sources is of importance. The aim of this study was to investigate and compare the genotoxicity and the ability to induce inflammatory mediators of nine different particle types from wood and pellets combustion, from tire-road wear and collected from an urban street and a subway station. The comet assay was used to assess genotoxicity after exposure of the human lung cell line A549. Inflammatory effects were measured as induction of IL-6, IL-8 and TNF-alpha after exposure of human macrophages. We found that all particles tested caused DNA damage and those from the subway caused more damage than the other particles (p<0.001) likely due to redox-active iron. In contrast, particles collected from an urban street were most potent to induce inflammatory cytokines. Particles from tire-road wear collected using a road simulator were genotoxic and able to induce cytokines. Finally, more effective combustion of wood led to less emission of particles, but those emitted did not show less toxicity in this study.
    • Mechanisms related to the genotoxicity of particles in the subway and from other sources.

      Karlsson, Hanna L.; Holgersson, Asa; Moller, Lennart (2008-03)
      Negative health effects of airborne particles have clearly been shown in epidemiological studies. People get exposed to particles from various sources such as the combustion of, for example, diesel and wood and also from particles arising from tire-road wear. Another source of importance for certain populations is exposure to particles in subway systems. We recently reported that these particles were more genotoxic when compared to that of several other particle types. The aim of this study was to further investigate and compare the toxicity of subway particles and particles from other sources as well as investigate some mechanisms behind the genotoxicity of subway particles. This was done by comparing the ability of subway particles and particles from a street, pure tire-road wear particles, and particles from wood and diesel combustion to cause mitochondrial depolarization and to form intracellular reactive oxygen species (ROS). Furthermore, the genotoxicity and ability to cause oxidative stress was compared to magnetite particles since this is a main component in subway particles. It was concluded that the subway particles and also street particles and particles from wood and diesel combustion caused mitochondrial depolarization. The ability to damage the mitochondria is thus not the only explanation for the high genotoxicity of subway particles. Subway particles also formed intracellular ROS. This effect may be part of the explanation as to why subway particles show such high genotoxicity when compared to that of other particles. Genotoxicity can, however, not be explained by the main component, magnetite, by water-soluble metals, or by intracellular mobilized iron. The genotoxicity is most likely caused by highly reactive surfaces giving rise to oxidative stress.