• Activated neutrophils inhibit nucleotide excision repair in human pulmonary epithelial cells: role of myeloperoxidase.

      Güngör, Nejla; Godschalk, Roger W.L.; Pachen, Daniëlle M.; Van Schooten, Frederik J.; Knaapen, Ad M. (The Federation of American Societies for Experimental Biology, 2007-08)
      Neutrophils are thought to affect pulmonary carcinogenesis by promoting the metabolism of inhaled chemical carcinogens, causing enhanced formation of promutagenic DNA adducts. We hypothesized that neutrophils interfere with the removal of such DNA adducts by inhibiting nucleotide excision repair (NER) in target cells. Human alveolar epithelial cells (A549) were cocultured with activated neutrophils, and we observed a significant reduction of NER in the A549 cells, which was abrogated by addition of the myeloperoxidase (MPO) inhibitor 4-aminobenzoic acid hydrazide. The inhibitory effect of neutrophils could be mimicked by the MPO product hypochlorous acid (HOCl), which caused an acute, dose-dependent inhibition of NER in A549 cells. This was independent of cytotoxicity or ATP loss and persisted up to 24 h. These data were supported by showing that HOCl caused a delayed removal of DNA adducts in benzo[a]pyrene-diolepoxide-exposed A549 cells. The acute HOCl-induced inhibition of NER can only partly be explained by oxidative modification of repair proteins. To explain the more persistent effects of HOCl, we analyzed the expression of NER genes and found that HOCl significantly reduced XPC expression. In conclusion, these data indicate that neutrophils are potent inhibitors of nucleotide excision repair. This may provide a further biological explanation for the association between inflammation and lung cancer development.
    • Both replication bypass fidelity and repair efficiency influence the yield of mutations per target dose in intact mammalian cells induced by benzo[a]pyrene-diol-epoxide and dibenzo[a,l]pyrene-diol-epoxide.

      Lagerqvist, Anne; Hakansson, Daniel; Prochazka, Gabriela; Lundin, Cecilia; Dreij, Kristian; Segerback, Dan; Jernstrom, Bengt; Tornqvist, Margareta; Seidel, Albrecht; Erixon, Klaus; et al. (2008-08-02)
      Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.
    • Development and validation of a direct sandwich chemiluminescence immunoassay for measuring DNA adducts of benzo[a]pyrene and other polycyclic aromatic hydrocarbons.

      Georgiadis, Panagiotis; Kovacs, Katalin; Kaila, Stella; Makedonopoulou, Paraskevi; Anna, Livia; Poirier, Miriam C.; Knudsen, Lisbeth E.; Schoket, Bernadette; Kyrtopoulos, Soterios A. (2012-05-18)
      We have developed and validated a sandwich chemiluminescence immunoassay (SCIA) which measures polycyclic aromatic hydrocarbon (PAH)-DNA adducts combining high throughput and adequate sensitivity, appropriate for evaluation of adduct levels in human population studies. Fragmented DNA is incubated with rabbit antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and subsequently trapped by goat anti-rabbit IgG bound to a solid surface. Anti-single-stranded (ss) DNA antibodies binds in a quantity proportional to the adduct levels and is detected by chemiluminescence. The BPDE-DNA SCIA has a limit of detection of 3 adducts per 10(9) nucleotides with 5 μg DNA per well. We have validated the BPDE-DNA SCIA using DNA modified in vitro, DNA from benzo[a]pyrene (BP)-exposed cultured cells and mice. The levels of adduct measured by SCIA were lower (30-60%) than levels of bulky DNA adducts measured in the same samples by (32)P-postlabelling. The BPDE-DNA SCIA also detected adducts produced in vivo by PAHs other than BP. When blood DNA samples from maternal/infant pairs were assayed by BPDE-DNA SCIA, the adduct levels obtained were significantly correlated. However, there was no correlation between (32)P-postlabelling and SCIA values for the same samples. The SCIA can be extended to any DNA adduct and is expected to provide, when fully automated, a valuable high-throughput approach in large-scale population studies.
    • DNA repair and replication influence the number of mutations per adduct of polycyclic aromatic hydrocarbons in mammalian cells.

      Lagerqvist, Anne; Håkansson, Daniel; Lundin, Cecilia; Prochazka, Gabriela; Dreij, Kristian; Segerbäck, Dan; Jernström, Bengt; Törnqvist, Margareta; Frank, Heinz; Seidel, Albrecht; et al. (2011-08-15)
      Polycyclic aromatic hydrocarbons (PAH) are an important class of environmental contaminants many of which require metabolic activation to DNA-reactive bay or fjord region diolepoxides (DE) in order to exert their mutagenic and carcinogenic effects. In this study, the mutagenicity of the bay region diolepoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (±)-anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydrodibenzo[a,h]anthracene (DBADE) and the fjord region diolepoxides (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]-pyrene (DBPDE) and (±)-anti-3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]-phenanthrene (BPhDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. The (32)P-postlabelling assay was applied to analyze DNA adduct levels and the Hprt gene mutation assay for monitoring mutations. Previously, we found that the mutagenicity per adduct was four times higher for DBPDE compared to BPDE in NER proficient cells. In these same cells, the mutagenicity of DBADE and BPhDE adducts was now found to be significantly lower compared to that of BPDE. In NER deficient cells the highest mutagenicity per adduct was found for BPDE and there was a tenfold and fivefold difference when comparing the BPDE data with the DBADE and BPhDE data, respectively. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the Hprt gene. Since NER turned out to be an important pathway for the yield of mutations, we further analyzed the role of transcription coupled NER versus global genome NER. However, our data demonstrate that neither of these pathways seems to be the sole factor determining the mutation frequency of the four PAH-DE and that the differences in the repair efficiency of these compounds could not be related to the presence of a bay or fjord region in the parent PAH.
    • Identification through microarray gene expression analysis of cellular responses to benzo(a)pyrene and its diol-epoxide that are dependent or independent of p53.

      Hockley, Sarah L.; Arlt, Volker M.; Jahnke, Gunnar; Hartwig, Andrea; Giddings, Ian; Phillips, David H. (2008-01)
      Human colon carcinoma cells (HCT116) differing in p53 status were exposed to benzo(a)pyrene (BaP) or anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) and their gene expression responses compared by complementary DNA microarray technology. Exposure of cells to BPDE for up to 24 h resulted in gene expression profiles more distinguishable by duration of exposure than by p53 status, although a subset of genes were identified that had significantly different expression in p53 wild-type (WT) cells relative to p53-null cells. Apoptotic signalling genes were up-regulated in p53-WT cells but not in p53-null cells and, consistent with this, reduced viability and caspase activity were also p53 dependent. BPDE modulated cell cycle and histone genes in both cell lines and, in agreement with this, both cell lines accumulated in S phase. In p53-WT cells, G(2) arrest was also evident, which was associated with accumulation of CDKN1A. Regardless of p53 status, exposure to BaP for up to 48 h had subtle effects on gene transcription and had no influence on cell viability or cell cycle. Interestingly, DNA adduct formation after BaP, but not BPDE, exposure was p53 dependent with 10-fold lower levels detected in p53-null cells. Other cell lines were investigated for BaP-DNA adduct formation and in these the effect of p53 knockdown was also to reduce adduct formation. Taken together, these results give further insight into the role of p53 in the response of human cells to BaP and BPDE and suggest that loss of this tumour suppressor can influence the metabolic activation of BaP.